СТРОЕНИЕ, РАЗВИТИЕ И ЗНАЧЕНИЕ КОСТНОЙ ТКАНИ

У наземных позвоночных костная ткань из примитивной грубоволокнистой становится пластинчатой. В онтогенезе домашних копытных животных грубоволокнистая костная ткань скелета начинает заменяться пластинчатой на самых поздних этапах развития плода. Задержка формирования пластинчатой костной ткани у плода свидетельствует о недозрелости родившихся копытных животных.

Костная ткань состоит из органических (коллагеновые волокна, костные клетки) и неорганических (минеральных) веществ. Соотношение органических веществ кости (оссеина) и неорганических неодинаково и зависит от места кости в скелете, вида, возраста и двигательной активности животных. На минеральный состав кости влияет не только состояние органической (остеоидной) части кости, но и кормление в сочетании с двигательной активностью. Отсутствие последней приводит к быстрому выведению солей кальция из организма. Это особенно важно учитывать при беременности животных.

Минерализация скелета плода зависит от рациона и двигательной активности матери.

Если в грубоволокнистой костной ткани коллагеновые волокна расположены войлокообразно и содержат большое количество беспорядочно размещенных остеоцитов (костных клеток), то зрелая пластинчатая костная ткань образована колоссальным количеством тончайших пластин, в межклеточном веществе которых коллагеновые волокна и остеоциты имеют упорядоченную ориентацию. На основе коллагеновых волокон откладывается минеральная часть ткани в виде двухфазной системы минералов: кристаллического гидроксилапатита и аморфного фосфата кальция. Последний, заполняя про-межутки между волокнами, является наиболее лабильной частью, активнее участвует в обмене веществ организма:

Благодаря наличию кристаллической фазы минералов в пластинчатой костной ткани при упругих деформациях кости во время движения под действием сил сжатия и растяжения возникает пьезоэлектричество. В костях в связи с этим образуется и генерируется электроэнергия, необходимая для происходящих в них процессов. Кость поляризуется, полярность электропотенциалов распределяется так, что вогнутые поверхности кости под действием сил сжатия и растяжения заряжаются отрицательно, выпуклые — положительно.

Направление коллагеновых волокон в пластине соответствует силовым натяжениям — одному из важнейших условий формирования механических свойств кости. Именно натяжение волокна вызывает его кристаллизацию — способность откладывать на себе минеральные соли, что является доказательством взаимосвязи и большой зависимости минерализации кости от состояния ее органической части и движения.

Количество минеральных солей в различных костях различно и зависит от расположения кости в скелете, вида и возраста животного. В условиях гиподинамии количество минеральных солей уменьшается. В скелете содержится до 98% всех неорганических веществ организма, в том числе 99% солей кальция и 87% фосфора (Б. С. Касавина, А. П. Торбенко, 1972), поэтому костная ткань — мощное депо минеральных веществ.

Костная ткань в связи с различным воздействием механической нагрузки двух типов строения — компактная и губчатая.

Костные пластины, формирующие компактное вещество (substantia conipacta), его обычно называют «компактной», образуют вокруг сосудов вставленные одна в другую слоистые трубочки (до 20), которые называются остеонами. Они располагаются продольно по отношению к продольной оси кости. Между собой остеоны склеиваются аморфным веществом, пропитанным минеральными солями (рис. 12). Между остеонами костные пластины могут располагаться в виде вставочных пластин или, наслаиваясь на поверхностях компактного вещества, образуют слои наружных и внутренних систем пластин. Плотность и толщина компакты неодинаковы в различных костях и даже на разных участках одной и той же кости, что связано с тем, что отдельные кости и их участки испытывают различную биомеха-ническую нагрузку. Чем ниже кость в звеньях конечностей, тем менее она минерализована (исключение — III фаланга копытных).

12

Рис. 12. Схема строения длинной трубчатой кости

Многочисленные сосудистые каналы остеонов сообщаются между собой и образуют прободающие канальцы, открывающиеся на поверхности компакты микроскопическими отверстиями (до 200 на 1 мм2), которые придают ей микропористое строение. В каналах проходят сосуды и нервы кости. Благодаря слоистости строения и каналам, заполненным сосудами, несущими кровь, компакта может выдерживать большие нагрузки на излом и обладает значительной жесткостью. Компактное вещество всегда лежит на поверхности кости.

Губчатое костное вещество (substantia spongiosa) действительно напоминает по строению губку. Его костные пластины в виде различной толщины балок и трабекул соединяются между собой под определенными угловыми сочетаниями и образуют ячейки, заполненные костным мозгом. Направления костных балок спонгиозы соответствуют направлению основных линий напряжения, благодаря чему они могут выдерживать большие нагрузки на сжатие. Губчатое вещество расположено под компактой внутри кости. Упругие деформации в губчатом веществе выражены гораздо больше, чем в компактном.

Костная ткань (особенно в губчатом веществе) чрезвычайно лабильна. Ни одна система в организме, кроме крови, не может так быстро и постоянно изменяться, как костная ткань. Скелет непрерывно обновляется. Костная ткань в организме может полностью восстанавливаться после повреждения. В ней постоянно происходит перестройка — идут два противоположных процесса: восстановления (регенерации) и разрушения (резорбции). Разрушение структуры старого и восстановление нового костного вещества каждый раз приводят к построению такой его структуры, которая полностью соответствует новым требованиям механической нагрузки, связанной с двигательной активностью животных. В губчатом веществе процессы перестройки происходят более интенсивно, чем в компактном, и степень минерализации костных балок оказывается очень различной. Костная ткань чутко улавливает малейшие изменения физической нагрузки, в ответ на которые происходит перестройка (ремодуляция), это придает костной ткани большую износоустой-чивость (практически она не изнашивается).

Приобретенные в эволюции свойства постоянной перестройки костной ткани позвоночных обеспечили ей сочетание чрезвычайно важных механических свойств — крепости и одновременно легкости и, что не менее важно, привели в связи с этим к активному участию скелета в общем обмене веществ, а также к выполнению роли буфера, стабилизирующего ионный состав внутренней среды организма, который обеспечивает норму гомеостаза (постоянства внут-ренней среды организма).

Самая твердая (кроме эмали зубов), но и самая лабильная костная ткань благодаря приобретенной в эволюции структуре и способности постоянно перестраиваться под действием физической нагрузки, связанной с движением, не только стала обладать высшими механическими свойствами, износоустойчивостью, необходимыми ей как опорной ткани, но и стала участником обмена веществ, электролитического баланса, от которых зависит благополучие всего организма. Современные данные о скелете не дают уже права называть его пассивной частью аппарата движения.

Недостаток действия физической нагрузки на скелет (будет ли это движение плода или взрослого животного) приводит не только к нарушению структуры скелета, но и к нарушению связанных с ней трофических, кроветворных и электролитических его функций. Костная система благодаря этому становится интегрирующей, жизненно важной системой организма, без которой весь организм как целостная система не только двигаться, но и существовать не может.

 

Статистика

Вверх

© Ветеринария 2021