Серологическая диагностика. Благодаря эффективности серологических методов при некоторых инфекционных заболеваниях еще в конце 19 начале 20 века были сделаны первые попытки серологической диагностики туберкулеза человека и животных в РА и РСК. Было установлено, что в сыворотках крови 50-90% больных содержатся специфические антитела. В разное время, для серологической диагностики туберкулеза животных, были разработаны и применялись следующие методы: реакция агглютинации (РА), реакция геммагглютинации (РГА), реакция непрямой геммагглютинации (РНГА), реакция иммунодиффузии в агаровом геле (РИД), реакция связывания комплемента (РСК) /Ю.Я.Кассич,1979; Н.П.Овдиенко, А.И.Козин, 1979; Р.В.Тузова, 1983; А.П.Лысенко, 1994; Л.П.Ходун,1997/. Последняя даже вошла в наставление по диагностике туберкулеза (от 25.02.1986г.), где в качестве основного компонента использовали комплексный туберкулезный аллерген (КТА) для РСК. Эта реакция была рекомендована как дополнительный тест, причем не для диагностики туберкулеза вообще, а лишь как метод для отбора реагирующих на туберкулин животных для контрольного диагностического убоя. Однако ее применение было ограничено, затем приостановлено вообще. С одной стороны из-за громоздкости постановки самой методики, а с другой - из-за неопределенности в большинстве случаев получаемых результатов.

Мнения об эффективности серологической диагностика туберкулеза значительно различались. Так, многие исследователи указывали на отсутствие совпадения результатов РСК, туберкулиновой пробы и данных убоя животных. Отмечено, что РСК не всегда выявляет всех больных коров, а также положительная РСК может отмечаться и у здоровых животных / Ю.Я.Кассич,1979/. Исходя из выше сказанного, серологические методы рекомендовались, как дополнительные в комплексе с другими методами диагностики.

Особенную значимость серологические методы и, в частности PC^ приобрели при выявлении больных животных, энергичных к введению туберкулина. Оказалось, что этим методом можно довыявить 2-6% больных животных.

Низкая результативность серологической диагностики туберкулеза, по видимому, связана с быстрым включением, на определенных этапах инфекционного процесса, синтезирующихся антител в иммунные комплексы с антигенами возбудителя /Авербах М.М., Романова Р.Ю., Инсанов А.Б., 1984; Т.Н.Агеева, 1993; А.П.Лысенко, 1994/.

Тем не менее, в практике профилактики туберкулеза животных достаточно часто встречаются ситуации, когда необходимо быстро выяснить причину реакций на туберкулин для уточнения эпизоотической и эпидемиологической ситуации и выявления активации инфекционного процесса. Это можно сделать, только исследовав особенности гуморального иммунного ответа, то есть, определив уровни и специфичность антимикобактериальных антител, а также прямым обнаружением в организме животных ДНК возбудителя туберкулеза. Поэтому необходимо дальнейшее совершенствование и разработка новых, более эффективных и информативных методов серологической диагностики туберкулеза, ведь своевременное выявление и удаление из стада инфицированных возбудителем туберкулеза животных - основа профилактики заболевания.

Новым направлением в серологической диагностике является иммуноферментный анализ (ИФА). Сущность метода заключается в использовании антител или антигена, меченых ферментом, для выявления комплексов антиген-антитело. Существует несколько разновидностей постановки реакции, с использованием в качестве твердой фазы полистироловых панелей, на которых фиксируют антиген или антитела. Для осуществления метода применяют соответствующие специфические антигены и антитела или вещества, связывающиеся с иммуноглобулинами (белок А) также меченые ферментом /непрямой вариант/. Фермент, взаимодействующий с субстратом, дает характерное окрашивание, интенсивность которого прямо пропорциональна содержанию комплекса антиген-антитело. Метод позволяет определять до 4-9 нанограммов сухого вещества /Г.Фримель,1987/. Сравнительно невысокая стоимость и возможность автоматизации обеспечила широкое распространение ИФА для диагностики многих заболеваний.

При диагностике туберкулеза человека впервые ИФА применили E. Nassau et.al. в 1976 году. В ветеринарной практике впервые для диагностики туберкулеза у баранов ИФА применил J. Мorris et. al в I979 году. Они обнаружили положительную реакцию у 20 из 30 инфицированных баранов, однако, положительная реакция была и у 3 из II здоровых животных. Таким образом, ухе первые исследования показали, что в ИФА не удается выявить всех больных с одной стороны, а с другой стороны наблюдаются положительные реакции у здоровых субъектов. Поэтому, исследования были направлены на изыскание лучших антигенов и подбор оптимальных условий реакции.

Для иммуноферментной диагностики туберкулеза у человека и животных испытывались микобактериальные антигены разной специфичности и степени очистки в том числе: ППД туберкулины, суспензии инактивированных клеток, культуральные фильтраты, ультрозвуковые лизаты, препараты цитоплазмы, очищенные индивидуальные антигены (5, БЦЖ60, МРТ 59, МРТ64, МРВ 70, ESAT6, Tb38, LAM, TB10, BCG65, TB70) [Daniel T., Debanne S., 1987, Harboe et al, 1990, Mustafa A, et al. 1999]. Как правило, применение препаратов, содержащих комплексы антигенов, было предпочтительным, так как они обеспечивали 30-96% чувствительности и 70-100% специфичности методов. Использование высокоочищенных видоспецифических антигенов микобактерий не нашло широкого применения из-за их невысокой чувствительности (18-35%) при выявлении больных животных в серологических тестах [Harboe, 1991; Fifis et al., 1994; А.П. Лысенко, 1994].

Внимание исследователей привлекают так называемые иммунодоминантные антигены с видоспецифическими эпитопами, стимулирующие выраженный гуморальный ответ. Современные достижения в области фракционирования и фрагментирования макромалекул делают вполне, возможным создание препаратов и методов диагностики, позволяющих достичь максимальной чувствительности и специфичности. В последние годы удалось обнаружить и идентифицировать ряд антигенов микобактерий, выявляющих антитела у 85 - 90 % инфицированных животных, а так же, получить их в частично очищенном виде. Испытание антигенов в ИФА подтвердило возможность использования их не только для диагностики, но и дифференциации туберкулиновых реакций. На основании полученных результатов были разработаны новые направления в ИФА диагностики туберкулеза /А.П.Лысенко, Т.Н.Агеева/.

Для определения уровня и специфичности антимикобактериальных антител, РНИУП «Институт экспериментальной ветеринарии им. С.Н.Вышелесского НАН Беларуси» предложен «Набор для выявления и дифференциации антител к возбудителю туберкулеза у крупного рогатого скота в иммуноферментном анализе (ИФА) - ИФА-БОВИТУБ». Особенностью набора является то, что он позволяет определять не только антитела к видоспецифическим антигенам, но и косвенно выявлять такие антитела в составе иммунных комплексов, что повышает чувствительность набора до 80-90% и специфичность до 85-94%. Такие параметры позволяют применять набор и для массовой серологической диагностики туберкулеза.

Одним из направлений повышения чувствительности и специфичности ИФА-диагностики является определение в сыворотках крови свободно циркулирующих антигенов и иммунных комплексов возбудителя туберкулеза, синтез которых преобладает на определенных стадиях инфекционного процесса в организме. Исследования последних лет показали, что наиболее перспективным в этом отношении является непрямой конкурентный вариант ИФА, позволяющий выявлять в крови больных туберкулезом животных антигены микобактерий и их комплексы с антителами и, тем самым, регистрировать активную туберкулезную инфекцию в стаде. На основе полученных данных в РНИУП «ИЭВ им. С.Н.Вышелесского НАН Беларуси» был разработан набор «ИФА-БОВИТУБк», который можно использовать как для диагностики туберкулеза у любых видов животных (кроме кроликов), так и человека.

Разработаны методы диагностики болезни и на основе обнаружения ДНК возбудителя туберкулеза с применением полимеразной цепной реакции (ПЦР). Чувствительность метода позволяет проводить прижизненную диагностику болезни путем исследования крови или бронхиальной слизи. Однако приобретение дорогих высокоспецифических диагностикумов для этой реакции и дороговизна оборудования ограничивает ее применение.

Статистика

Вверх

© Ветеринария 2021